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C A L C U L A T I N G  T H E  E V O L U T I O N  OF  C O A G U L A T I N G  

SYSTEMS 

E. V.  Semenov UDC 541.18.04 

We substantiate a quantitative analysis of the granulometric composition of coagulating particles. 
The collision and subsequent merging (cohering) of particles in a stream with the formation of aggregates are 

determined by a wide range of effects - random (thermal or Brownian) motion and convergence under the action of electrical, 
gravitational, hydrodynamic, and other forces. Strictly speaking, study of the evolution of the granulometric composition of 
the particles coagulating in a stream should be made on the basis of mathematical analysis of the laws of mass and momentum 
conservation for each phase of the mixture, and also on the basis of a balance relationship with respect to the probability density 
of the coagulating particles in the form, for example, of the Smolukhovskii kinetic equation [1]. The difficulties arising in this 
approach are so great that it is, as a rule, possible to obtain results with respect to quantitative modeling of the kinetics of the 

coagulating particles only for problems of the simplest type. 
Assuming that with regard to the conditions of realization of the particle interaction process all the assumptions adopted 

in deriving the Smolukhovskii equation are met, we have [2] 

m 

On(m)/dt  = 0,5 f fit(m -/~, iz)n(m - la)n~u)dlx - 

0 (1) 

n(m) f fit(m, iz)n(tz)d/~, 
0 

where n(m) is the probability density (PD) of the particles with respect to mass; t is time; ~l(m, /z) is the kernel of the 
integrodifferential equation (1), which is on the basis of its physical meaning a non-negative symmetric function of its 
arguments. With the introduction of the Dirac delta function, Eq. (1) takes the form [2, 3] 

On l Ot = ~f ~f K(m, m',  m " ) n ( m ' ) n ( m " ) d m ' d m " .  (2) 
0 0 

Here 

K(m, m', m") -- 0,5 fil(m', m")A(m, m', m");  

A(m, m',  m" )  = ~(m -- m' -- m")  -- 6(m -- m')  -- 6(m -- m" ) .  

We take as the initial condition for the PD 

n(m, O) = n~ (3) 

To simplify the analysis of the problem (2), (3), we convert to dimensionless quantities using the formulas 

n -- M-IL-~,  t = 77, m = M~, (4) 

Where M, L, T are the characteristic magnitudes of the mass, length, and time, which are specified for each specific problem; 

fi, t ,  1/1 are the dimensionless PD, time, and mass. Then, substituting Eq.(4) into Eq. (2) and dropping for simplicity the bars 
over the dimensionless quantities, we have 
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On / Ot = e i ~f KCrn, m', m")nCm')nCra")drn'dln" 
0 0 

(5) 

(e is a dimensionless parameter). The initial condition (3) with respect to the dimensionles PD retains its form. 

We find the solution of the integrodifferential equation (5), agreeing with the initial condition (3), in the form of the 

series 

n(m,  t; e) = no(m , t) + ent(rn, t) + .. .  (6) 

Then as a consequence of Eqs. (3), (6) we will have the initial conditions with respect to the successive approximations 

no, n 1, ...,: 

no(m, 0) = n~ 

nl(m,  O) = O, n2(rn, O) = 0 . . . . .  

and in accordance with Eqs. (2), (6) we will have the reduced system of differential equations 

Ono/Ot = O; 

Onl/Ot = K(m,  m , m )no(m )no(m )dm dm ; 
0 0 

O n J  Ot = K(m,  m , 
0 0 

nl( m')no( m "  ) ]din'din",  

(7) 

(8) 

(9) 

(10) 

(11) 

the right sides of which are the explicit double quadratures with respect to the approximations of  lower order. By virtue of the 

specific nature of the system (9)-(11), the series (6) takes the form 

n(m,  t; e) = ~ (et) i ~oi(m)/i! , (12) 
i=O 

where ~o(m) = no(m), ~i(m) (i = 1, 2 . . . .  ) are the explicit expressions for the multiple quadratures on the right in the system 
(9)-(11). Considering Eqs. (7), (8), on the basis of Eqs. (9)-(11) we obtain 

n o = n~ = ~,o(m); 
n I = ~ol(m)t, n2(m, t) = 0,5 ~o2(rn)t 2 .... 

Here 

~ l (m)  = ~f "f K(m,  m' ,  m " ) f o ( m ' ) ~ o ( m " ) d m ' d m " ;  
0 0 

~o2(m ) = f f KCm, m', m")[~o(m')~t(m") + 
0 0 

~ol(m')~,o(m" ) I d m ' d m " ,  

(13) 

(14) 

(15) 

(16) 
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In the following, without loss of generality of the arguments, we shall examine an initial PD in the form of the 
superposition of a pair of  delta functions [2]: 

n~ = volal6(m - ml) + a26(m - m2) l (17) 

(v 0 = No L3, N O is the number of particles in unit volume of the starting mixture, oq + ~2 = 1, m 1 < m2). Moreover, for 

the sake of some reduction of the volume of the calculations, in the specific quantitative analysis of  the problem we shall further 
assume that the kernel of  Eq. (1) is a difference kernel. In this case we have from Eqs. (15), (17), using the properties of the 
delta function and considering the prohibition on coagulation of particles of identical mass 

~Pl(m) = cqa2v2~ ml'  m2)' (18) 

where 

D(m,  m I, m2) = fl(m l, m2)A(m, ral, m2) , f l  = ill" 

To find the higher approximations of the expansion (6) we use the obvious formulas 

~f ~f D(z, x, y)D(x, a, b) [a16(y - a) + a26(Y - b) ldxdy = 
0 0 

fl(a, b){a l iD(z ,  a + b, z,) - D(z,  a, zl) - O(z, b, zx) 1 + 

a2lD(z,  a § b, z2) - D(z,  a, z2) - D(z,  b, z2) 1}; 

(19) 

f D(z ,x , y )D(x ,a ,b )D(y ,c ,d )dxdy  = fl(a,b)fl(c,d) x 
0 0 

[D(z,a + b,c + d) - D(z ,a ,c  + d) - D(z,b,c  + d) + D(z ,a  + b,c) - (20) 
D(z,a,c) - D(z,b,c) + D(z,a + b,d) - D(z ,a ,d)  - D(z ,b,d)  ! 

(a, b, c, d, z 1, z 2 are positive constants). Then by virtue of Eqs. (13), (16-19), and also on the basis of the difference nature 
of the kernel, we obtain 

~o2(m ) = 2 ~f ~f K(m,  m ' ,  m")~oo(m' )~ot (m")dm'am" = 
0 0 

"f "f n(ra, ra', = (21) 
0 0 

ala2v~(rat ,  ra2) [atD(ra' rax + ra2' ral) - 

(a I + a2)D(m, mj,  m2) + a2D(m, m i + m 2, m2) l. 

Similarly, on the basis of  Eqs. (13), (17-21) we have 

~o3(m ) = O,S "f ~f n ( m , m ' , m " )  t2~oo(m')~o2(m")' + ~ol(m')~o,Cra") ldrn'dra" = 
0 0 

alct2v~3(mt,m2)(al fl(m t + m,,ra 0 {cs[D(m,2m 1 + rn2,ml) - 

D ( m , m ,  + m2,ml) ] + a2[D(m,2ra t + m2,m2) - D(m,ra t + m2,m2) - (22) 

D(m,ml ,rn  2) ]} - (a I + a,)fl(m v m2){ct , [D(m,m I + m2,rnl) - 

D ( m , m v m 2 )  ] + c s [ D ( m , m i  + m,,m2) - D ( m , m v m  2) l} + 

a~8(m 1 + m2,ra2){at[D(m,m I + 2myra2) - D ( m , m  I + m2,mx) - 

D(m,m2,ml)  ] + a ~ ( m  I + m2,m2)[D(m,2m 2 + ml,rn 2) - 

D ( m , m  1 + rn2,m2) ]} - a l a ~ ( m v r a 2 ) D ( m , m v m 2 ) ) .  

It follows from the analysis of Eqs. (17), (18), (21), (22) that each of their successive approximations yields an estimate 

of the contribution to the overall number of particles of increasingly large aggregates, formed as the result of the merging of 
particles of one size with multiple monomers of another size. However, the finding of approximations of order higher than the 
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third becomes a quite complex problem, although the structure of these approximations is evident. Since in accordance with 

Eqs. (17), (18), (21), (22) the series (12) is the superposition of delta-type functions, it is difficult to substantiate its 
convergence. However,  for the primitive with respect to m (if it exists) of this expansion, representing with accuracy to a 

multiplier the distribution function, under the specific limitations imposed on the coagulation kernel /3 the majorant can be 

constructed, and thus the convergence of the series 

n(m, t; e ) d m  = ( , ) ' f  ~oi(rn)dm/i!  
o ~=o o ( 2 3 )  

can be shown. 
Considering only the symmetry of the kernel of Eq. (1) and using formulas (15)-(20), we conclude that (for a non- 

difference kernel!) if the zero approximation contains two terms, then each of the primary terms in the first approximation 

contains, 22.3 terms, in the second approximation - 23-32 terms, and in the i-th approximation - 2i+1.3 i terms. Therefore 

the i-th approximation depends on i 2 i+1-3 i terms, each of which in accordance with Eqs. (19), (20) is proportional to the 

product 

t i 

rlae{a~fl Im x + jm2, m 2 + (l - l")m I 1 < Yl/3 trot + ym v m 2 + (i - l')rn t ] <~ fl~,~, 
j= l  j= l  

(pj + qj = i ) ,  

where/3ma x >__ 0 is the maximal value of the function/3 in the region (0, m). Thus, for the series (23) there can be constructed 

the majorant with respect to the variable m: 

f2 = ~_, tv~o§ (24) 
i=l 

We see that under the assumption adopted on the existence for the kernel/3 of  a maximum, the series (24) converges in the 

time interval 0 < t < oo, therefore Eq. (24) majorizes the series (23) over this same interval. 

As a computational example we shall consider the problem of the evolution of the dispersivity of  a fine powder that 
is suspended in an infinite volume of a quiescent viscous incompressible liquid. The f'me powder consists particles of two sorts 

with the masses m 1 and m 2 and the density Os and is subject to the action of gravity forces and Archimedes and Stokes forces 

(gravitational coagulation). Then the sedimentation rate of the small particles is calculated from the formula [4]. 

(AO = 0s - Pt > 0) or, if R(m) = [3m/(41rps)]4/3, 

v(m) = [2gAp / (9/~ t) l [ 3 m / ( 4 : t p  s) ]2r (25) 

In this case the kernel of Eq. (1) takes the form 

/~l(m,~) = =IX(m) + Rf, u ) l  2 Iv(m) - of~u) l, (26) 

characteristic for gradient coagulation problems [5-7]. And in accordance with Eqs. (25), (26) 

3 14/3 z,,g~ p(m',  m" )  = (m 'v3 + m"V3) ~ I m'W - m,,V3 I. 
9#  1; 4xp .  

Since the kernel /3(m' ,  m") for the gravitational coagulation problem is an increasing function of its arguments, for 

the given problem the convergence of the expansion (6) can not be substantiated with the aid of  the majorant. 
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Fig. 1 

It we taken as the characteristic magnitudes of the mass, length, and time 

m = ~ l ( g ~ ) ,  L = ( u t / a p ) ~ / ~ l ~  ~, r = t u ~ l ( , ; a p ) I  w ,  

then (in dimensionless variables) 
�9 \ 4 / 3  2 

~(~', m")  = (re,v3 + ~,,~/3)~ I re,u3 _ ~ , , , / 3  I. 

Introducing the total number of particles per unit volume 

N(t) = ~f n(m, t)dm, N O = "f nO(m)dm = Vo, 
o o 

we obtain the PD of the particles with respect to their masses, normed by N, 

@(ra, 0 = n(m, O/N( t ) ,  

and also the distribution function 

F(m, t) = f @ ( u ,  t)dl~ = 1 fo o - f f~  n(u, t)a>,. 

Retaining three terms in the expansion (12), we have approximately 

F(ra, t) = .~ [n~ + et~Pl(U) + 0.5(e02!p2(u) ld/t. 
o 

Then we can obtain on the basis of Eq. (26) the change in the relative number of particles of  a given size over the time 

t as a result of their coagulation. For example, the relative change of the number of particles of mass m < m 2 is 

A F  = F ( , n 2 ) / F ( , * ) ,  (27) 

where 

F(m2) = VoCtl (1- -~exx~(ml ,m2){1- -0 .5gl (a l+Ot2)f l (rnl ,m2)_ajJ(ml+nl2 ,ml  ) ]}); 

F( ,o )  = v0(1 - raxlaf l (ml  ' m2){ 1 + 0 . 5 ~ [ a f l ( m l  + m2 ' ml  ) _ 

(,~, + a2)~(m ,, m 9 + a f t (m ,  + m v m,) l}), ~' = a~o. 

205 



We shall examine a suspension with the parameters: ~1 = 10-3 Pa.sec, Ps = 103 kg/m3, Ap = 102 kg/m 3, g = 9.8 

m/sec 2, volume concentrations in the starting mixture of each of the solid fractions c 1 = 5.104, c 2 = 5.10 -4, or�94 = 0 .89 ,  tx 2 
= 0.11 with the relationship between the radii of the particles R 2 = 2R t. Then if ~ = 0.32 is the coefficient accounting for 

non-compactness of packing of the spheres [4], the number of particles per unit volume of the starting mixture N O = 37~(Cl/R13 

+ c2/R23)/(4~r). We take as the theoretical process realization time r = 60 sec (or dimensionless form ~ ~ 104). 

It follows from the analysis of the results obtained in accordance with Eq. (27) (see Fig. 1) that the relative content 

in the mixture as a consequence of the acts of coagulation of the particles of the small fraction, as we would expect, decreases 

with time, and more rapidly the large the dimension of the particles, although this change over the studied time interval is 
relatively small (of the order of 2%). In Fig. 1 the lines 1-3 correspond to R 1 = 5.10 "6, 10 -5, 25 • 10 -6 m and R 2 = 10 -5, 
2.10 5, 5.10 -5 m. 

The performed quantitative analysis of the coagulation problem was based on the use in deriving the equation (1) of 

the formula for calculating the geometric probability of collision of the particles, which leads to results that are overstated in 
comparison with the real results with regard to the number of cohered particles. This is due to neglect in the idealized 

coagulation kinetics model of phenomenon that is usually present in practice: the flow of the fine particles around the coarse 
particles [8, 9]. In this connection the kernel of the Smolukhovskii equation is corrected by a capture coefficient in order to 
refine the calculations [1]. 

In this case, although we obtain an equation having a more complex structure in comparison with Eq. (1), the 
quantitative analysis of this equation can in principle be carried out using the same technique used for the relation (1). 
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